ACROPOLIS Project

The Acropolis Project, “Classification of ponds against potential risk combining GIS and Machine Learning”, framed in the call “Challenges-Collaboration 2019” of the State Plan for Scientific and Technical Research and Innovation of the Ministry of Science, Innovation and Universities of the Government of Spain

Budget: 560 mil euros

Duration: 29 months

Acropolis aims to build an aid system for the classification of ponds based on potential risk. The system will optimize various processes using Machine Learning (ML) techniques, Geographic Information Systems (GIS) and infrastructure asset management using BIM methodology (Building Information Modelling).

The project will result in three different versions with the aim of addressing the problems of:

    1. 1- A web application that will make it possible to know what type of pond it is according to the potential risk. It will allow the pre-classification of ponds on a massive scale, determining the priority of investment in carrying out the study and in improving safety in the event of a possible breach.
    2. 2- An automated tool for the elaboration of Pond Classification Reports by means of an optimal process. In addition, it will integrate an optimized calculation engine with the use of graphic cards (GPUs), breakage methodologies and specific and updated risk criteria, a wizard to extract the results, and a module for semi-automatic generation of the report according to the current legislation.
    3. 3- A BIM model in which all the information on the reservoir is integrated. This will increase the performance of the GIS model in that the infrastructure assets can be represented in 3 dimensions together with their technical attributes with a high level of detail.

IDP as coordinator, will lead the development of a GIS – BIM platform tool for the integration of breakage models and information related to the safety of the pond.

Consortium:

  • IDP Ingenieria y Arquitectura Iberia SL (Coordinator)
  • Centro de Investigación CIMME

Other resources:

Funded by: FEDER/Ministerio de Ciencia, Innovación y Universidades- Agencia Estatal de Investigación/ Project RTC-2019-007343-5

SIMILAR ACtIONS